American Chemical Society
jp903500q_si_001.cif (1.78 kB)

Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70

Download (1.78 kB)
posted on 2009-06-04, 00:00 authored by Dan Xie, Lynne B. McCusker, Christian Baerlocher, Lisa Gibson, Allen W. Burton, Son-Jong Hwang
A structure analysis of the borosilicate zeolite MCM-70, whose synthesis had been patented in 2003, was reported in 2005. Unfortunately, that structure analysis was somewhat ambiguous. Anisotropic line broadening made it difficult to model the peak shape, some peaks in the electron density map could not be interpreted satisfactorily, the framework geometry was distorted, and MAS NMR results were partially contradictory. In an attempt to resolve some of these points, an optimization of the synthesis was undertaken, and the structure was reinvestigated. The structure was solved from synchrotron powder diffraction data collected on an as-synthesized sample (Pmn21, a = 13.3167(1) Å, b = 4.6604(1) Å, c = 8.7000(1) Å) using a powder charge-flipping algorithm. The framework topology, with a 1-dimensional, 10-ring channel system, is identical to the one previously reported. However, the B in this new sample was found to be ordered in the framework, fully occupying one of the four tetrahedral sites. Two extra-framework K+ ion positions, each coordinated to five framework O atoms and one water molecule, were also found. The solid state 29Si, 11B and 1H NMR results are fully consistent with this ordered structure.