posted on 2004-12-22, 00:00authored byMassimo Boiocchi, Laura Del Boca, David Esteban Gómez, Luigi Fabbrizzi, Maurizio Licchelli, Enrico Monzani
1,3-bis(4-nitrophenyl)urea (1) interacts through hydrogen bonding with a variety of oxoanions in
an MeCN solution to give bright yellow 1:1 complexes, whose stability decreases with the decreasing basicity
of the anion (CH3COO- > C6H5COO- > H2PO4- > NO2- > HSO4- > NO3-). The [Bu4N][1·CH3COO]
complex salt has been isolated as a crystalline solid and its molecular structure determined, showing the
formation of a discrete adduct held together by two N−H···O hydrogen bonds of moderate strength. On
the other hand, the F- ion first establishes a hydrogen-bonding interaction with 1 to give the most stable
1:1 complex, and then on addition of a second equivalent, induces urea deprotonation, due to the formation
of HF2-. The orange-red deprotonated urea solution uptakes carbon dioxide from air to give the
tetrabutylammonium salt of the hydrogencarbonate H-bond complex, [Bu4N][1·HCO3], whose crystal and
molecular structures have been determined.