posted on 2014-04-02, 00:00authored byValery
A. Postnikov, Yaroslav I. Odarchenko, Alexander V. Iovlev, Vladimir V. Bruevich, Alexander Yu. Pereverzev, Ludmila G. Kudryashova, Vladimir V. Sobornov, Loïc Vidal, Dmitry Chernyshov, Yuriy N. Luponosov, Oleg V. Borshchev, Nikolay M. Surin, Sergei A. Ponomarenko, Dimitri A. Ivanov, Dmitry Yu. Paraschuk
Single
crystals of thiophene–phenelyne co-oligomers (TPCOs)
have previously shown their potential for organic optoelectronics.
Here we report on solution growth of large-area thin single-crystalline
films of TPCOs at the gas–liquid interface by using solvent–antisolvent
crystallization, isothermal slow solvent evaporation, and isochoric
cooling. The studied co-oligomers contain identical conjugated core
(5,5′-diphyenyl-2,2′-bithiophene) and different terminal
substituents, fluorine, trimethylsilyl, or trifluoromethyl. The fabricated
films are molecularly smooth over areas larger than 10 × 10 μm2, which is of high importance for organic field-effect devices.
The low-defect structure of the TPCO crystals is suggested from the
monoexponential kinetics of the PL decay measured in a wide dynamic
range (up to four decades) and from low crystal mosaicity assessed
by microfocus X-ray diffraction. The TPCO crystal structure is solved
using a combination of X-ray and electron diffraction. The terminal
substituents affect the crystal structure of TPCOs, bringing about
the formation of a noncentrosymmetric crystal lattice with a crystal
symmetry Cc for the bulkiest trimethylsilyl terminal
groups, which is unusual for linear conjugated oligomers. Comparing
the different crystal growth techniques, it is concluded that the
solvent–antisolvent crystallization is the most robust for
fabrication of single-crystalline TPCOs films. The possible nucleation
and crystallization mechanisms operating at the gas–solution
interface are discussed.