jf9b06364_si_003.xlsx (17.37 kB)
Download file

Label-Free Quantitative Proteomics Reveals the Multitargeted Antibacterial Mechanisms of Lactobionic Acid against Methicillin-Resistant Staphylococcus aureus (MRSA) using SWATH-MS Technology

Download (17.37 kB)
posted on 22.10.2019, 20:09 by Shimo Kang, Fanhua Kong, Xiaona Liang, Mohan Li, Ning Yang, Xueyan Cao, Mei Yang, Dongbing Tao, Xiqing Yue, Yan Zheng
The objective of the present study was to reveal the antibacterial mechanism of lactobionic acid (LBA) against methicillin-resistant Staphylococcus aureus (MRSA) using quantitative proteomics by sequential window acquisition of all theoretical mass spectra (SWATH-MS) to analyze 100 differentially expressed proteins after LBA treatment. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis including reactive oxygen species (ROS), virulence-associated gene expression, and the relative quantification of target proteins and genes by parallel reaction monitoring and quantitative real-time PCR. Combining the ultrastructure observations, proteomic analysis, and our previous research, the mode of LBA action against MRSA was speculated as cell wall damage and loss of membrane integrity; inhibition of DNA repair and protein synthesis; inhibition of virulence factors and biofilm production; induction of oxidative stress; and inhibition of metabolic pathways. These results suggest potential applications for LBA in food safety and pharmaceuticals, considering its multitarget effects against MRSA.