American Chemical Society
Browse

Insights into the Impact of Trans-Zeatin Overproduction-Engineered Sinorhizobium meliloti on Alfalfa (Medicago sativa L.) Tolerance to Drought Stress

Download (55.12 kB)
dataset
posted on 2024-04-02, 19:43 authored by Wenzhe Yu, Li Luo, Xiangyu Qi, Yuman Cao, Jie An, Zhiguo Xie, Tianming Hu, Peizhi Yang
Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.

History