pr200900s_si_002.xls (4.16 MB)

Improved Two-Dimensional Reversed Phase-Reversed Phase LC-MS/MS Approach for Identification of Peptide-Protein Interactions

Download (4.16 MB)
dataset
posted on 03.02.2012 by Heike Stephanowitz, Sabine Lange, Diana Lang, Christian Freund, Eberhard Krause
Quantitative mass spectrometry (MS) in combination with affinity purification approaches allows for an unbiased study of protein-protein and peptide-protein interactions. In shotgun approaches that are based on proteolytic digestion of complex protein mixtures followed by two-dimensional liquid-phase chromatography, the separation effort prior to MS analysis is focused on tryptic peptides. Here we developed an improved offline 2-D liquid chromatography-MS/MS approach for the identification and quantification of binding proteins utilizing reversed-phase capillary columns with acidic acetonitrile-containing eluents in both chromatographic dimensions. A specific fractionation scheme was applied in order to obtain samples with evenly distributed peptides and to fully utilize the separation space in the second dimension nanoLC-MS/MS. We report peptide-protein interaction studies to identify phosphorylation-dependent binding partners of the T cell adapter protein ADAP. The results of the SILAC-based pull-down experiments show this approach is well suited for distinguishing phosphorylation-specific interactions from unspecific binding events. The data provide further evidence that phosphorylated Tyr 595 of ADAP may serve as a direct binding site for the SH2 domains of the T cell proteins SLP76 and NCK. From a technical point of view we provide a detailed protocol for an offline 2-D RP-RP LC-MS/MS method that offers a robust and time-saving alternative for quantitative interactome analysis.

History

Exports