jm9b00349_si_005.csv (6.42 kB)

Hybridization of β‑Adrenergic Agonists and Antagonists Confers G Protein Bias

Download (6.42 kB)
posted on 01.05.2019, 00:00 by Markus Stanek, Louis-Philippe Picard, Maximilian F. Schmidt, Jonas M. Kaindl, Harald Hübner, Michel Bouvier, Dorothée Weikert, Peter Gmeiner
Starting from the β-adrenoceptor agonist isoprenaline and beta-blocker carvedilol, we designed and synthesized three different chemotypes of agonist/antagonist hybrids. Investigations of ligand-mediated receptor activation using bioluminescence resonance energy transfer biosensors revealed a predominant effect of the aromatic head group on the intrinsic activity of our ligands, as ligands with a carvedilol head group were devoid of agonistic activity. Ligands composed of a catechol head group and an antagonist-like oxypropylene spacer possess significant intrinsic activity for the activation of Gαs, while they only show weak or even no β-arrestin-2 recruitment at both β1- and β2-AR. Molecular dynamics simulations suggest that the difference in G protein efficacy and β-arrestin recruitment of the hybrid (S)-22, the full agonist epinephrine, and the β2-selective, G protein-biased partial agonist salmeterol depends on specific hydrogen bonding between Ser5.46 and Asn6.55, and the aromatic head group of the ligands.