cs9b05383_si_002.cif (238.67 kB)

Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation

Download (238.67 kB)
posted on 28.01.2020, 21:29 by Xinkun Ren, Ajay L. Chandgude, Rudi Fasan
We report the development of an iron-based biocatalytic strategy for the asymmetric synthesis of fused cyclopropane-γ-lactams, which are key structural motifs found in synthetic drugs and bioactive natural products. Using a combination of mutational landscape and iterative site-saturation mutagenesis, sperm whale myoglobin was evolved into a biocatalyst capable of promoting the cyclization of a diverse range of allyl diazoacetamide substrates into the corresponding bicyclic lactams in high yields and with high enantioselectivity (up to 99% ee). These biocatalytic transformations can be performed in whole cells and could be leveraged to enable the efficient (chemo)­enzymatic construction of chiral cyclopropane-γ-lactams as well as β-cyclopropyl amines and cyclopropane-fused pyrrolidines, as valuable building blocks and synthons for medicinal chemistry and natural product synthesis.