cm9b02239_si_003.cif (2.08 MB)

From NaZn4Sb3 to HT-Na1–xZn4–ySb3: Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties

Download (2.08 MB)
posted on 17.10.2019 by Volodymyr Gvozdetskyi, Bryan Owens-Baird, Sangki Hong, Tori Cox, Gourab Bhaskar, Colin Harmer, Yang Sun, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Julia V. Zaikina
Two new sodium zinc antimonides NaZn4Sb3 and HT-Na1–xZn4–ySb3 were synthesized by using reactive sodium hydride, NaH, as a precursor. The hydride route provides uniform mixing and comprehensive control over the composition, facilitating fast reactions and high-purity samples, whereas traditional synthesis using sodium metal results in inhomogeneous samples with a significant fraction of the more stable NaZnSb compound. NaZn4Sb3 crystallizes in the hexagonal P63/mmc space group (No. 194, Z = 2, a = 4.43579(4) Å, c = 23.41553(9) Å) and is stable upon heating in vacuum up to 736 K. The layered crystal structure of NaZn4Sb3 is related to the structure of the well-studied thermoelectric antimonides AeZn2Sb2 (Ae = Ca, Sr, Eu). Upon heating in vacuum, NaZn4Sb3 transforms to HT-Na1–xZn4–ySb3 (x = 0.047(3), y = 0.135(1)) due to partial Na/Zn evaporation/elimination, as was determined from high-temperature in situ synchrotron powder X-ray diffraction. HT-Na1–xZn4–ySb3 has a complex monoclinic structure with considerable degrees of structural disorder (P21/c (No. 14), Z = 32, a = 19.5366(7) Å, b = 14.7410(5) Å, c = 20.7808(7) Å, β = 90.317(2)°) and is stable exclusively in a narrow temperature range of 736–885 K. Further heating of HT-Na1–xZn4–ySb3 leads to a reversible transformation to NaZnSb above 883 K. Both compounds exhibit similarly low thermal conductivity at room temperature (0.9 W m–1 K–1) and positive Seebeck coefficients (38–52 μV/K) indicative of holes as the main charge carriers. However, resistivities of the two phases differ by 2 orders of magnitude.