posted on 2019-01-18, 00:00authored byHenrik Johansson, Yi-Chun Isabella Tsai, Ken Fantom, Chun-Wa Chung, Sandra Kümper, Luigi Martino, Daniel A. Thomas, H. Christian Eberl, Marcel Muelbaier, David House, Katrin Rittinger
Modification
of proteins with polyubiquitin chains is a key regulatory
mechanism to control cellular behavior and alterations in the ubiquitin
system are linked to many diseases. Linear (M1-linked) polyubiquitin
chains play pivotal roles in several cellular signaling pathways mediating
immune and inflammatory responses and apoptotic cell death. These
chains are formed by the linear ubiquitin chain assembly complex (LUBAC),
a multiprotein E3 ligase that consists of 3 subunits, HOIP, HOIL-1L,
and SHARPIN. Herein, we describe the discovery of inhibitors targeting
the active site cysteine of the catalytic subunit HOIP using fragment-based
covalent ligand screening. We report the synthesis of a diverse library
of electrophilic fragments and demonstrate an integrated use of protein
LC–MS, biochemical ubiquitination assays, chemical synthesis,
and protein crystallography to enable the first structure-based development
of covalent inhibitors for an RBR E3 ligase. Furthermore, using cell-based
assays and chemoproteomics, we demonstrate that these compounds effectively
penetrate mammalian cells to label and inhibit HOIP and NF-κB
activation, making them suitable hits for the development of selective
probes to study LUBAC biology. Our results illustrate the power of
fragment-based covalent ligand screening to discover lead compounds
for challenging targets, which holds promise to be a general approach
for the development of cell-permeable inhibitors of thioester-forming
E3 ubiquitin ligases.