ja7b05713_si_001.cif (5.17 MB)
Download file

Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation

Download (5.17 MB)
posted on 17.07.2017, 17:53 by Thomas J. Coxon, Maitane Fernández, James Barwick-Silk, Alasdair I. McKay, Louisa E. Britton, Andrew S. Weller, Michael C. Willis
Readily available β-carbonyl-substituted aldehydes are shown to be exceptional substrates for Rh-catalyzed intermolecular alkene and alkyne hydroacylation reactions. By using cationic rhodium catalysts incorporating bisphosphine ligands, efficient and selective reactions are achieved for β-amido, β-ester, and β-keto aldehyde substrates, providing a range of synthetically useful 1,3-dicarbonyl products in excellent yields. A correspondingly broad selection of alkenes and alkynes can be employed. For alkyne substrates, the use of a catalyst incorporating the Ampaphos ligand triggers a regioselectivity switch, allowing both linear and branched isomers to be prepared with high selectivity in an efficient manner. Structural data, confirming aldehyde chelation, and a proposed mechanism are provided.