American Chemical Society
Browse

Evaluation of Amide Bioisosteres Leading to 1,2,3-Triazole Containing Compounds as GPR88 Agonists: Design, Synthesis, and Structure–Activity Relationship Studies

Download (3.04 kB)
dataset
posted on 2021-08-26, 07:06 authored by Md Toufiqur Rahman, Ann M. Decker, Lucas Laudermilk, Rangan Maitra, Weiya Ma, Sami Ben Hamida, Emmanuel Darcq, Brigitte L. Kieffer, Chunyang Jin
The orphan receptor GPR88 has been implicated in a number of striatal-associated disorders, yet its endogenous ligand has not been discovered. We have previously reported that the amine functionality in the 2-AMPP-derived GPR88 agonists can be replaced with an amide (e.g., 4) without losing activity. Later, we have found that the amide can be replaced with a bioisosteric 1,3,4-oxadiazole with improved potency. Here, we report a further study of amide bioisosteric replacement with a variety of azoles containing three heteroatoms, followed by a focused structure–activity relationship study, leading to the discovery of a series of novel 1,4-disubstituted 1H-1,2,3-triazoles as GPR88 agonists. Collectively, our medicinal chemistry efforts have resulted in a potent, efficacious, and brain-penetrant GPR88 agonist 53 (cAMP EC50 = 14 nM), which is a suitable probe to study GPR88 functions in the brain.

History