American Chemical Society
Browse

Effects of Systematic Shortening of Noncovalent C8 Side Chain on the Cytotoxicity and NF-κB Inhibitory Capacity of Pyrrolobenzodiazepines (PBDs)

Download (40.48 kB)
dataset
posted on 2019-01-28, 00:00 authored by David B. Corcoran, Thomas Lewis, Kazi S. Nahar, Shirin Jamshidi, Christopher Fegan, Chris Pepper, David E. Thurston, Khondaker Miraz. Rahman
The systematic shortening of the noncovalent element of a C8-linked pyrrolobenzodiazepine (PBD) conjugate (13) led to the synthesis of a 19-member library of C8-PBD monomers. The critical elements of 13, which were required to render the molecule cytotoxic, were elucidated by an annexin V assay. The effects of shortening the noncovalent element of the molecule on transcription factor inhibitory capacity were also explored through an enzyme-linked immunosorbent assay-based measurement of nuclear NF-κB upon exposure of JJN-3 cells to the synthesized molecules. Although shortening the noncovalent interactive element of 13 had a less than expected effect upon compound cytotoxicity due to reduced DNA interaction, the transcription factor inhibitory capacity of the molecule was notably altered. This study suggests that a relatively short noncovalent side chain at the C8 position of PBD is sufficient to confer cytotoxicity. The shortened PBD monomers provide a new ADC payload scaffold because of their potent cytotoxicity and drug-like properties.

History