jp8b05135_si_003.zip (6.88 kB)
Download fileDynamic Description of the Catalytic Cycle of Malate Enzyme: Stereoselective Recognition of Substrate, Chemical Reaction, and Ligand Release
dataset
posted on 2018-11-30, 00:00 authored by Zhongji Pu, Mengdi Zhao, Yue Zhang, Wenhui Sun, Yongming BaoIn protein engineering,
investigations of catalytic cycle facilitate
rational design of enzymes. In the present work, deeper analysis on
the catalytic cycle of malate enzyme (EC 1.1.1.40), an enzyme involved
in cancer metabolic and fatty acid synthesis, was performed. In substrate
binding, stereoselective recognition of a substrate originates from
distance and angle difference between two chiral substrates and Mn2+ as well as monodentate or coplanar ion reaction with Arg165.
In catalytic transformation, the activation barrier for the hydride
transfer of d-malate is 20.28 kcal/mol higher than that for l-malate. The activation barrier for β-decarboxylation
of oxaloacetate is about 4.59 kcal/mol higher than the activation
barrier for the hydride transfer of l-malate. The effective activation barrier is 16.44 kcal/mol,
which is in close agreement with the value derived from the application
of transition-state theory and the Eyring equation to kcat. In ligand release, l/d-malate needs
to overcome a higher barrier than pyruvate to break all bonds in parallel
and then to escape from the binding pocket. Leu167 and Asn421 comprise
a swinging gate to control the product release. The more open gate
is possibly required in the direction of pyruvate to l-malate.
Our studies are focused on extending structural knowledge regarding
the malate enzyme and provided a powerful strategy for future experimental
investigations.