jm1c01287_si_006.pdb (328.53 kB)
Download file

Discovery of a Novel Androgen Receptor Antagonist Manifesting Evidence to Disrupt the Dimerization of the Ligand-Binding Domain via Attenuating the Hydrogen-Bonding Network Between the Two Monomers

Download (328.53 kB)
posted on 23.11.2021, 07:08 by Weitao Fu, Minkui Zhang, Jianing Liao, Qing Tang, Yixuan Lei, Zhou Gong, Luhu Shan, Mojie Duan, Xin Chai, Jinping Pang, Chun Tang, Xuwen Wang, Xiaohong Xu, Dan Li, Rong Sheng, Tingjun Hou
Androgen receptor (AR) has proved to be a vital drug target for treating prostate cancer. Here, we reported the discovery of a novel AR antagonist 92 targeting the AR ligand-binding pocket, but distinct from the marketed drug enzalutamide (Enz), 92 demonstrated inhibition on the AR ligand-binding domain (LBD) dimerization, which is a novel mechanism reported for the first time. First, a novel hit (26, IC50 = 5.57 μM) was identified through virtual screening based on a theoretical AR LBD dimer bound with the Enz model. Then, guided by molecular modeling, 92 was discovered with 32.7-fold improved AR antagonistic activity (IC50 = 0.17 μM). Besides showing high bioactivity and safety, 92 can inhibit AR nuclear translocation. Furthermore, 92 inhibited the formation of the AR LBD dimer, possibly through attenuating the hydrogen-bonding network between the two monomers. This interesting finding would pave the way for the discovery of a new class of AR antagonists.