cg5b00336_si_001.cif (12.22 kB)
Download file

Design and Synthesis of a Series of Nitrogen-Rich Energetic Cocrystals of 5,5′-Dinitro‑2H,2H′‑3,3′-bi-1,2,4-triazole (DNBT)

Download (12.22 kB)
dataset
posted on 06.05.2015, 00:00 by Jonathan C. Bennion, Andrew McBain, Steven F. Son, Adam J. Matzger
A series of three energetic cocrystals containing 5,5′-dinitro-2H,2H′-3,3′-bi-1,2,4-triazole (DNBT) were obtained. These incorporate a class of energetic materials that has seen significant synthetic work, the azole family (tetrazoles, triazole, pyrazole, etc.), and yet have struggled to see broad application. A cocrystal was obtained with the triazole 5-amino-3-nitro-1H-1,2,4-triazole (ANTA) in a stoichiometry of 2:1 (ANTA:DNBT). Two cocrystals were obtained with the pyrazoles 1H,4H-3,6-dinitropyrazolo­[4,3-c]­pyrazole (DNPP) and 3,4-dinitropyrazole (3,4-DNP) in ratios of 1:1 (DNPP:DNBT) and 2:1 (3,4-DNP:DNBT). All three cocrystals, 2:1 ANTA/DNBT (1), 1:1 DNPP/DNBT (2), and 2:1 3,4-DNP/DNBT (3), have high densities (>1.800 g/cm3) and high predicted detonation velocities (>8000 m/s). In small-scale impact drop tests, cocrystals 1 and 2 were both found to be insensitive, whereas cocrystal 3 possesses sensitivity between that of its two pure components 3,4-DNP and DNBT. The hydrogen bonding motif of the three components with DNBT is preserved among all three cocrystals, and this observation suggests a generally useful motif to be employed in the development of other energetic–energetic cocrystals. These cocrystals represent an area of energetic materials that has yet to be explored for cocrystalline materials.

History