ae0c00811_si_002.cif (841.9 kB)

Cyclopentadithiophene-Based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%

Download (841.9 kB)
posted on 24.07.2020, 22:04 by Seckin Akin, Michael Bauer, Ryusuke Uchida, Neha Arora, Gwenole Jacopin, Yuhang Liu, Dirk Hertel, Klaus Meerholz, Elena Mena-Osteritz, Peter Bäuerle, Shaik Mohammed Zakeeruddin, M. Ibrahim Dar, Michael Grätzel
There is an urge to develop new hole-transporting materials (HTMs) for perovskite solar cells (PSCs), which can yield comparable power conversion efficiencies (PCEs) yet mitigate the issue of stability associated with the state-of-the-art HTM spiro-MeOTAD. Herein, we designed and prepared C2v-symmetric spiro-configured HTM-1 comprising a central acridine–cyclopentadithiophene core unit flanked with triarylamine moieties. PSCs containing a 40 nm thin HTM-1 layer for hole extraction yielded a stabilized PCE approaching 21% under standard illumination. Owing to its higher hole mobility (μh) at low electric field, an impressive short-circuit current density (JSC) of 24.7 mA cm–2 and a high fill factor (FF) of 0.77 have been achieved. More importantly, HTM-1-based PSCs presented an excellent long-term operational stability under continuous illumination for 400 h and thermal stability at 80 °C, which can be ascribed to its high glass transition temperature of 168 °C and superior moisture tolerance. Arguably, the confluence of high performance and remarkable stability will lead to the development of technologically interesting new, stable, and efficient PSCs.