American Chemical Society
Browse

Cyanthiwigin Natural Product Core as a Complex Molecular Scaffold for Comparative Late-Stage C–H Functionalization Studies

Download (275.72 kB)
dataset
posted on 2018-01-09, 00:00 authored by Kelly E. Kim, Ashley M. Adams, Nicholas D. Chiappini, J. Du Bois, Brian M. Stoltz
The desire for maximally efficient transformations in complex molecule synthesis has contributed to a surge of interest in C–H functionalization methods development in recent years. In contrast to the steady stream of methodological reports, however, there are noticeably fewer studies comparing the efficacies of different C–H functionalization protocols on a single structurally intricate substrate. Recognizing the importance of heteroatom incorporation in complex molecule synthesis, this report discloses a comparative examination of diverse strategies for C–O, C–N, and C–X bond formation through late-stage C–H oxidation of the tricyclic cyanthiwigin natural product core. Methods for allylic C–H acetoxylation, tertiary C–H hydroxylation, tertiary C–H amination, tertiary C–H azidation, and secondary C–H halogenation are explored. These efforts highlight the robustness and selectivities of many well-established protocols for C–H oxidation when applied to a complex molecular framework, and the findings are relevant to chemists aiming to employ such strategies in the context of chemical synthesis.

History