posted on 2004-04-14, 00:00authored byMilya G. Davlieva, Jian-Ming Lü, Sergey V. Lindeman, Jay K. Kochi
The classic nitrobenzene anion-radical (NB-• or nitrobenzenide) is isolated for the first time as
pure crystalline alkali-metal salts. The deliberate use of the supporting ligands 18-crown-6 and [2.2.2]cryptand allows the selective formation of contact ion pairs designated as (crown)M+NB-•, where M+ =
K+, Rb+, and Cs+, as well as the separated ion pair K(cryptand)+NB-•both series of which are structurally
characterized by precise low-temperature X-ray crystallography, ESR analysis, and UV−vis spectroscopy.
The unusually delocalized structure of NB-• in the separated ion pair follows from the drastically shortened
N−C bond and marked quinonoidal distortion of the benzenoid ring to signify complete (95%) electronic
conjugation with the nitro substituent. On the other hand, the formation of contact ion pairs results in the
substantial decrease of electronic conjugation in inverse order with cation size (K+ > Rb+) owing to increased
localization of negative charge from partial (NO2) bonding to the alkali-metal cation. Such a loss in electronic
conjugation (or reverse charge transfer) may be counterintuitive, but it is in agreement with the distribution
of odd-electron spin electron density from the ESR data and with the hypsochromic shift of the characteristic
absorption band in the electronic spectra. Most importantly, this crystallographic study underscores the
importance of ion-pair structure on the intrinsic property (and thus reactivity) of the component ionsas
focused here on the nitrobenzenide anion.