American Chemical Society
Browse

Completing the Heterocubane Family [Cp*AlE]4 (E = O, S, Se, and Te) by Selective Oxygenation and Sulfuration of [Cp*Al]4: Density Functional Theory Calculations of [Cp*AlE]4 and Reactivity of [Cp*AlO]4 toward Hydrolysis

Download (9.35 MB)
dataset
posted on 2016-04-29, 17:58 authored by Adrian C. Stelzer, Peter Hrobárik, Thomas Braun, Martin Kaupp, Beatrice Braun-Cula
The subvalent aluminum compound [Cp*Al]4 (1) reacts with dioxygen, N2O, or sulfur to yield the heterocubane complexes [Cp*AlX]4 [X = O (2) and S (3)]. Treatment of [Cp*AlO]4 (2) with (tBuO)3SiOH gave [(tBuO)3SiOAlO]4 (6) and Cp*H. The structures and spectroscopic data of the Al clusters are supported by density functional theory (DFT) calculations, which also demonstrate the importance of noncovalent interactions (NCI) in oligomeric Al­(I) complexes as well as in [Cp*AlS]4 and the heavier homologues of Se and Te. The computed 27Al NMR shifts indicate a deshielding at the Al centers with increasing electronegativity of the chalcogen atom as well as significant spin–orbit shielding effects within the heavier heterocubane [Al4E4] cores. Further hydrolysis of 6 with an additional amount of silanol in the presence of water resulted in the formation of [Al4(OH)6(OH2)2(OSiOtBu3)6] (7), which shows a structural motif found in boehmite and diaspore.

History