tx6b00315_si_003.xlsx (102.73 kB)

Characterizing Sirtuin 3 Deacetylase Affinity for Aldehyde Dehydrogenase 2

Download (102.73 kB)
dataset
posted on 01.03.2017, 15:07 by Peter S. Harris, Joe D. Gomez, Donald S. Backos, Kristofer S. Fritz
Mitochondrial aldehyde dehydrogenase (ALDH2) plays a central role in the detoxification of reactive aldehydes generated through endogenous and exogenous sources. The biochemical regulation of enzyme activity through post-translational modification provides an intricate response system regulating mitochondrial detoxification pathways. ALDH2 is a known target of lysine acetylation, which arises as a consequence of mitochondrial bioenergetic flux and sirtuin deacetylase activity. The mitochondrial deacetylase Sirtuin 3 (SIRT3) has been reported to alter ALDH2 lysine acetylation status, yet the mechanism and consequence of this interaction remain unknown. The in vitro results presented here provide a novel biochemical approach using stable-isotope dilution mass spectrometry to elucidate which lysine residues are targeted by SIRT3 for deacetylation. Furthermore, HPLC–MS/MS and computational modeling elucidate a potential role for acetyl-Lys369 on ALDH2 in perturbing normal β-nicotinamide adenine dinucleotide (NAD+) cofactor binding.

History

Exports