posted on 2015-12-17, 07:15authored bySameh Magdeldin, Rachel E. Blaser, Tadashi Yamamoto, John R. Yates
The
purpose of this study is to determine the behavioral and proteomic
consequences of shock-induced stress in zebrafish (Danio rerio) as a vertebrate model. Here we describe the behavioral effects
of exposure to predictable and unpredictable electric shock, together
with quantitative tandem mass tag isobaric labeling workflow to detect
altered protein candidates in response to shock exposure. Behavioral
results demonstrate a hyperactivity response to electric shock and
a suppression of activity to a stimulus predicting shock. On the basis
of the quantitative changes in protein abundance following shock exposure,
eight proteins were significantly up-regulated (HADHB, hspa8, hspa5,
actb1, mych4, atp2a1, zgc:86709, and zgc:86725). These proteins contribute
crucially in catalytic activities, stress response, cation transport,
and motor activities. This behavioral proteomic driven study clearly
showed that besides the rapid induction of heat shock proteins, other
catalytic enzymes and cation transporters were rapidly elevated as
a mechanism to counteract oxidative stress conditions resulting from
elevated fear/anxiety levels.