American Chemical Society
ja8b12124_si_004.cif (1.09 MB)

Acid Responsive Hydrogen-Bonded Organic Frameworks

Download (1.09 MB)
posted on 2019-01-07, 00:00 authored by Ichiro Hisaki, Yuto Suzuki, Eduardo Gomez, Qin Ji, Norimitsu Tohnai, Takayoshi Nakamura, Abderrazzak Douhal
A porous hydrogen-bonded organic framework (HOF) responsive to acid was constructed from a hexaazatrinaphthylene derivative with carboxyphenyl groups (CPHATN). Precise structures of both 1,2,4-trichlorobenzene solvate [CPHATN-1­(TCB)] and activated HOF with permanent porosity (CPHATN-1a) were successfully determined by single-crystalline X-ray diffraction analysis. Permanent porosity of CPHATN-1a was evaluated by gas sorption experiments at low temperature. CPHATN-1a also shows significant thermal stability up to 633 K. Its crystals exhibit a rich photochemistry thanks to intramolecular charge-transfer and interunit proton-transfer reactions. Femtosecond (fs) experiments on crystals demonstrate that these events occur in ≤200 fs and 1.2 ps, respectively. Moreover, single-crystal fluorescence microscopy reveals a shift of the emission spectra most probably as a result of defects and a high anisotropic behavior, reflecting an ordered crystalline structure with a preferential orientation of the molecular dipole moments. Remarkably, CPHATN-1a, as a result of the protonation of pyradyl nitrogen atoms embedded in its π-conjugated core, shows reversible vapor acid-induced color changes from yellow to reddish-brown, which can be also followed by an ON/OFF of its emission. To the best of our knowledge, this is the first HOF that exhibits acid-responsive color changes. The present work provides new findings for developing stimuli responsive HOFs.