American Chemical Society
jp0264477_si_002.dat (75.34 kB)

Accurate Transferable Model for Water, n-Octanol, and n-Hexadecane Solvation Free Energies

Download (75.34 kB)
posted on 2002-10-02, 00:00 authored by A. J. Bordner, C. N. Cavasotto, R. A. Abagyan
We present a fast continuum method for the calculation of solvation free energies. It is based on a continuum electrostatics model with MMFF94 atomic charges combined with a nonelectrostatic term, which is a linear function of the solvent-accessible surface area. The model's parameters have been optimized using sets of 410, 382, and 2116 molecules for gas−water, gas−hexadecane, and water−octanol transfer, respectively. These are the largest, most diverse sets of molecules used to date for a similar solvation model. The model's predictive power was verified by using 90% of the molecule set for training and the remainder as a test set. The average test set errors differed by only about 1% from the average training set error, thus demonstrating the transferability of the parameters. The root-mean-square error for gas−water, gas−hexadecane, and water−octanol transfer are 0.53, 0.38, and 0.58 log P units, respectively. Because the solvation calculation takes on average only about 0.34 s per molecule on a 700 MHz Pentium CPU and contains atom types for essentially all drug molecules, it is suitable for real-time calculations of the ADME properties of molecules in virtual ligand screening libraries.