American Chemical Society
ja6b02638_si_005.cif (15.92 kB)
Download file

A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K

Download (15.92 kB)
posted on 2016-04-07, 00:00 authored by Jiang Liu, Yan-Cong Chen, Jun-Liang Liu, Veacheslav Vieru, Liviu Ungur, Jian-Hua Jia, Liviu F. Chibotaru, Yanhua Lan, Wolfgang Wernsdorfer, Song Gao, Xiao-Ming Chen, Ming-Liang Tong
Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy­(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.