American Chemical Society
Browse
mt9b01176_si_001.pdf (742.16 kB)

In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries

Download (742.16 kB)
journal contribution
posted on 2020-02-24, 13:06 authored by Carina S. Russell, Azadeh Mostafavi, Jacob P. Quint, Adriana C. Panayi, Kodi Baldino, Tyrell J. Williams, Jocelyn G. Daubendiek, Victor Hugo Sánchez, Zack Bonick, Mairon Trujillo-Miranda, Su Ryon Shin, Olivier Pourquie, Sahar Salehi, Indranil Sinha, Ali Tamayol
Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.

History