Using Theory To Reinterpret the Kinetics of Monofunctional Platinum Anticancer Drugs: Stacking Matters

The monofunctional platinum drug phenanthriplatin (phenPt) blocks the replication of cancer cells even if it reacts with only one guanine base. However, there is still insufficient experimental data to improve its cytotoxicity and all previously proposed chemical modifications of the parent structure have resulted in a loss of activity. We use theoretical tools to illustrate the key steps in the biological mechanisms of phenPt; that is, its activation in water and the subsequent attack on DNA. Our simulations suggest that the measured kinetic parameters, which are based on free nucleobases in solution, need to be reinterpreted because the self-assembled stacked reactive adduct formed in the reaction is inaccessible in real DNA. The constants reported here will help guide future work in the synthesis of anticancer platinum drugs.