American Chemical Society
Browse
am9b22574_si_001.pdf (705.96 kB)

Universal Strategy for Efficient Fabrication of Blood Compatible Surfaces via Polydopamine-Assisted Surface-Initiated Activators Regenerated by Electron Transfer Atom-Transfer Radical Polymerization of Zwitterions

Download (705.96 kB)
journal contribution
posted on 2020-02-25, 19:46 authored by Nan Li, Tong Li, Xin-Yu Qiao, Rong Li, Yao Yao, Yong-Kuan Gong
Implant and blood-contacting biomaterials are challenged by biofouling and thrombus formation at their interface. Zwitterionic polymer brush coating can achieve excellent hemocompatibility, but the preparation often involves tedious, expensive, and complicated procedures that are designed for specific substrates. Here, we report a facile and universal strategy of creating zwitterionic polymer brushes on variety of materials by polydopamine (PDA)-assisted and surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization (PDA-SI-ARGET-ATRP). A PDA adhesive layer is first dipcoated on a substrate, followed by covalent immobilization of 3-trimethoxysilyl propyl 2-bromo-2-methylpropionate (SiBr, ATRP initiator) on the PDA via condensation. Meanwhile, the trimethoxysilyl group of SiBr also cross-links the PDA oligomers forming stabilized PDA/SiBr complex coating. Finally, SI-ARGET-ATRP is performed in a zwitterionic monomer solution catalyzed by the parts per million level of CuBr2 without deoxygenization. The conveniently fabricated zwitterionic polymer brush coatings are demonstrated to have stable, ultralow fouling, and extremely blood compatible and functionalizable characteristics. This facile, versatile, and universal surface modification strategy is expected to be widely applicable in various advanced biomaterials and devices.

History