American Chemical Society
Browse
nl4019287_si_001.pdf (3.39 MB)

Two-Dimensional Transition Metal Honeycomb Realized: Hf on Ir(111)

Download (3.39 MB)
journal contribution
posted on 2016-02-18, 17:02 authored by Linfei Li, Yeliang Wang, Shengyi Xie, Xian-Bin Li, Yu-Qi Wang, Rongting Wu, Hongbo Sun, Shengbai Zhang, Hong-Jun Gao
Two-dimensional (2D) honeycomb systems made of elements with d electrons are rare. Here, we report the fabrication of a transition metal (TM) 2D layer, namely, hafnium crystalline layers on Ir(111). Experimental characterization reveals that the Hf layer has its own honeycomb lattice, morphologically identical to graphene. First-principles calculations provide evidence for directional bonding between adjacent Hf atoms, analogous to carbon atoms in graphene. Calculations further suggest that the freestanding Hf honeycomb could be ferromagnetic with magnetic moment μ/Hf = 1.46 μB. The realization and investigation of TM honeycomb layers extend the scope of 2D structures and could bring about novel properties for technological applications.

History