Tuned Hydrogen Bonding in Rare-Earth Metal–Organic Frameworks for Design of Optical and Electronic Properties: An Exemplar Study of Y–2,5-Dihydroxyterephthalic Acid

Organic linkers in metal–organic framework (MOF) materials exhibit differences in hydrogen bonding (H-bonding), which can alter the geometric, electronic, and optical properties of the MOF. Density functional theory (DFT) simulations were performed on a photoluminescent Y-2,5-dihydroxyterephthalic acid (DOBDC) MOF with H-bonding concentrations between 0 and 100%; the H-bonds were located on both bidentate- and monodentate-bound DOBDC linkers. At 0% H-bond concentration in the framework, the lattice parameters contracted, the density increased, and simulated X-ray diffraction patterns shifted. Comparison with published experimental data identified that Y–DOBDC MOF structures must have a degree of H-bond concentration. The concentration of H-bonds in the system shifted the calculated band gap energy from 2.25 eV at 100% to 3.00 eV at 0%. The band gap energies also indicate a distinction of H-bonds formed on bidentate-coordinated linkers compared to those on monodentate linkers. Additionally, when the calculated optical spectra are compared with experimental data, the ligand-to-ligand charge-transfer luminescence in Y–DOBDC MOFs is expected to result from an average of 20–40% H-bonding with at least 50% of the bidentate linkers containing H-bonding. Therefore, the type of H-bonding within the DOBDC linker determines the electronic structure and the optical absorption of the MOF framework structure. Tuning of the H-bonding in rare-earth MOFs provides an opportunity to control the specific optical and adsorption properties of the MOF framework on the basis of reactions between the linker and the environment.