American Chemical Society
Browse
nn7b00609_si_001.pdf (2.15 MB)

Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen

Download (2.15 MB)
journal contribution
posted on 2017-02-08, 00:00 authored by Mythreyi Unni, Amanda M. Uhl, Shehaab Savliwala, Benjamin H. Savitzky, Rohan Dhavalikar, Nicolas Garraud, David P Arnold, Lena F. Kourkoutis, Jennifer S. Andrew, Carlos Rinaldi
Decades of research focused on size and shape control of iron oxide nanoparticles have led to methods of synthesis that afford excellent control over physical size and shape but comparatively poor control over magnetic properties. Popular synthesis methods based on thermal decomposition of organometallic precursors in the absence of oxygen have yielded particles with mixed iron oxide phases, crystal defects, and poorer than expected magnetic properties, including the existence of a thick “magnetically dead layer” experimentally evidenced by a magnetic diameter significantly smaller than the physical diameter. Here, we show how single-crystalline iron oxide nanoparticles with few defects and similar physical and magetic diameter distributions can be obtained by introducing molecular oxygen as one of the reactive species in the thermal decomposition synthesis. This is achieved without the need for any postsynthesis oxidation or thermal annealing. These results address a significant challenge in the synthesis of nanoparticles with predictable magnetic properties and could lead to advances in applications of magnetic nanoparticles.

History