American Chemical Society
Browse
jm9b02123_si_001.pdf (2.66 MB)

Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation

Download (2.66 MB)
journal contribution
posted on 2020-03-09, 17:34 authored by John Liddle, Jonathan P. Hutchinson, Semra Kitchen, Paul Rowland, Margarete Neu, Ted Cecconie, Duncan S. Holmes, Emma Jones, Justyna Korczynska, Despoina Koumantou, Jonathan D. Lea, Leng Nickels, Michelle Pemberton, Alex Phillipou, Jessica L. Schneck, Hester Sheehan, Christopher P. Tinworth, Iain Uings, Justyna Wojno-Picon, Robert J. Young, Efstratios Stratikos
ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)­ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.

History