American Chemical Society
Browse
ao7b01574_si_003.pdf (261.1 kB)

Synthesis and Luminescent Modulation of ZnS Crystallite by a Hydrothermal Method

Download (261.1 kB)
journal contribution
posted on 2018-01-05, 14:22 authored by Zhiren Wei, Yue Lu, Jing Zhao, Shuya Zhao, Ruiqi Wang, Nian Fu, Xu Li, Li Guan, Feng Teng
Pure and Eu3+-doped zinc sulfide (ZnS) crystallites were synthesized through a hydrothermal method using water and ethanol (W/E) as the solvent. The powder samples have been characterized systematically using a number of characterization techniques such as X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, photoluminescence spectroscopy, and UV–vis absorption spectroscopy. The band gap of ZnS and ZnS/xEu3+ was calculated according to absorption spectroscopy, and an obvious red shift with the increasing molar fraction of Eu3+-doped ions was found. The luminescent mechanism of ZnS was explored by measuring the emission spectra of ZnS with different ratios of Zn and S. The emission spectra of ZnS/xEu3+ included the characteristic emission peak of ZnS and Eu3+ ions. The CIE chromaticity coordinates of the ZnS/xEu3+ sample varied with the molar fraction of Eu3+ ions. The emission intensity and morphology changed with the ratio of W/E in the process of hydrothermal reaction. The results indicate that the luminescence of the ZnS crystallite can be modulated by doping a certain amount of Eu3+ ions, changing the ratio of Zn and S, or adding moderate ethanol as the reaction medium.

History