American Chemical Society
Browse
jm7b00922_si_001.csv (9.12 kB)

Synthesis, Binding Mode, and Antihyperglycemic Activity of Potent and Selective (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine Inhibitors of Glycogen Synthase Kinase 3

Download (9.12 kB)
dataset
posted on 2017-10-10, 14:34 authored by Allan S. Wagman, Rustum S. Boyce, Sean P. Brown, Eric Fang, Dane Goff, Johanna M. Jansen, Vincent P. Le, Barry H. Levine, Simon C. Ng, Zhi-Jie Ni, John M. Nuss, Keith B. Pfister, Savithri Ramurthy, Paul A. Renhowe, David B. Ring, Wei Shu, Sharadha Subramanian, Xiaohui A. Zhou, Cynthia M. Shafer, Stephen D. Harrison, Kirk W. Johnson, Dirksen E. Bussiere
In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)­[2-(2-pyridylamino)­ethyl]­amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 IC50s in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.

History