Structure of Polyglycerol Oleic Acid Ester Nonionic Surfactant Reverse Micelles in Decane: Growth Control by Headgroup Size

The structure of polyglycerol oleic acid ester nonionic surfactant micelles in n-decane has been investigated at room temperature by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and densiometry techniques. The scattering data were evaluated by indirect Fourier transformation (IFT) or generalized indirect Fourier transformation (GIFT) methods depending on the volume fractions of the surfactants and also by model fit. A simple route to the growth control of reverse micelles by headgroup size of the surfactant was investigated. Additionally, the dependence of reverse micellar structure (shape and size) on temperature, composition, and added water was also investigated. The indirect Fourier transformation gives the real space pair-distance distribution function, p(r): a facile way for the quantitative estimation of structure parameters of the aggregates. It was found that the size of the reverse micelles increases with increasing the headgroup size of the surfactant. Globular type of micelles with maximum diameter ca. 6 nm observed in the monoglycerol oleic acid ester/decane system at 25 °C transferred into elongated prolate type micelles with maximum diameter ca. 19.5 nm in the hexaglycerol oleic acid ester/decane system. In a particular surfactant and oil system, increasing temperature decreased the micellar size. The size of the micelle was decreased by ∼25% upon increasing temperature from 25 to 75 °C in the 5 wt % diglycerol oleic acid ester/decane system. Concentration could not modulate the structure of micelles despite a wide variation in the surfactant concentration (5−25 wt %). Nevertheless, increasing surfactant concentration reduces the intermicellar distance, and a strong repulsive interaction peak was observed in the scattering curves at higher surfactant concentrations. Besides, the results obtained from the dynamic light scattering have shown the signature of diffusion hindrance relative to hard sphere with the surfactant concentration. Interestingly, the reverse micelles of the 10 wt % diglycerol oleic acid ester/decane system could incorporate ∼1.2% water in the micellar core and cause a dramatic growth to the micelles size. The size of the water swollen micelles was ∼40% bigger than the empty micelle.