American Chemical Society
Browse
ic9b03058_si_001.pdf (6.17 MB)

Structure, Magnetism, and Electrochemistry of LiMg1–xZnxVO4 Spinels with 0 ≤ x ≤ 1

Download (6.17 MB)
journal contribution
posted on 2019-12-14, 03:03 authored by Takeshi Uyama, Kazuhiko Mukai, Ikuya Yamada
Negative electrode materials with lower operating voltages are urgently required to increase the energy density of lithium-ion batteries. In this study, LiMgVO4 with a Na2CrO4-type structure, LiZnVO4 with a phenacite structure, and their mixture were treated under a high pressure of 12 GPa and a high temperature of 1273 K, and their electrochemical reactivities were examined in a nonaqueous lithium cell. Synchrotron X-ray diffraction (XRD) measurements and Raman spectroscopy revealed that the LiMg1–xZnxVO4 samples with 0 ≤ x ≤ 1 are in a single phase of the inverse spinel structure that forms a solid solution compound over the whole x range. All of the samples were brown or light black due to the presence of a small amount of V4+ ions with S = 1/2 and oxygen deficiencies. Since the majority of the vanadium ions are located at the route of the Li+ ion conduction pathway, no rechargeable capacity (Qrecha) would be expected. Nevertheless, all LiMg1–xZnxVO4 samples exhibited a Qrecha value of more than 200 mAh g–1 with an operating voltage of ∼0.8 V. This operating voltage is ∼1.6 V lower than that of LiV2O4 with a normal spinel structure. Furthermore, the x = 0.5 sample demonstrated an extremely stable cycle performance over 1 month. Ex situ XRD measurements clarified that the reversible electrochemical reaction can be attributed to the movement of vanadium ions from the tetrahedral 8a to octahedral 16c sites during the initial discharge reaction. Details regarding the crystal structure, magnetism, and electrochemistry of LiMg1–xZnxVO4 are presented.

History