Strained Enamines as Versatile Intermediates for Stereocontrolled Construction of Nitrogen Heterocycles

This contribution assesses the synthetic utility of molecules that impose conformational constrains onto aziridine-derived enamines. Synthetically versatile [3.1.0] and [4.1.0] bicyclic enamines have been prepared by intramolecular oxidative cycloamination of aziridine-containing olefins. This process is initiated by N-bromosuccinimide followed by base-mediated elimination of HBr to afford highly strained exo-bicyclic enamines. In addition, intramolecular aziridine addition to aldehyde functionality was found to afford the [3.1.0] and [4.1.0] bicyclic hemiaminals. These routes highlight possibilities for chemoselective oxidative transformations of aziridine-containing precursors without nitrogen protection/deprotection steps. The resulting products provide straightforward synthetic entries into a wide range of pyrrolidine- and piperidine-containing heterocycles that are positioned toward subsequent transformations via aziridine ring opening.