American Chemical Society
Browse
ja8b03714_si_002.cif (408.92 kB)

Stable Metallic State of a Neutral-Radical Single-Component Conductor at Ambient Pressure

Download (408.92 kB)
dataset
posted on 2018-05-07, 00:00 authored by Yann Le Gal, Thierry Roisnel, Pascale Auban-Senzier, Nathalie Bellec, Jorge Íñiguez, Enric Canadell, Dominique Lorcy
Molecular metals have been essentially obtained with tetrathiafulvalene (TTF)-based precursors, either with multicomponent ionic materials or, in a few instances, with single-component systems. In that respect, gold bis­(dithiolene) complexes, in their neutral radical state, provide a prototype platform toward such single-component conductors. Herein we report the first single-component molecular metal under ambient pressure derived from such Au complexes without any TTF backbone. This complex exhibits a conductivity of 750 S·cm–1 at 300 K up to 3800 S·cm–1 at 4 K. First-principles electronic structure calculations show that the striking stability of the metallic state finds its origin in sizable internal electron transfer from the SOMO-1 to the SOMO of the complex as well as in substantial interstack and interlayer interactions.

History