Single-Particle Tracking of Janus Colloids in Close Proximity

We describe algorithms and an experimental method based on differential interference contrast microscopy to discriminate optically anisotropic colloidal spheres under situations where diffraction owing to their close proximity causes overlapping images. The data analysis is applied to modulated optical nanoprobes (MOONs) that are coated with metal on one hemisphere. These methods enable single-particle tracking of rotation in addition to translation not only in concentrated suspensions but also in dilute suspensions when particles come into transient hydrodynamic contact. An illustrative example is given.