American Chemical Society
Browse
es5b05734_si_001.pdf (904.61 kB)

Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide

Download (904.61 kB)
journal contribution
posted on 2016-03-04, 00:00 authored by Leanne M. Gilbertson, Eva M. Albalghiti, Zachary S. Fishman, François Perreault, Charlie Corredor, Jonathan D. Posner, Menachem Elimelech, Lisa D. Pfefferle, Julie B. Zimmerman
Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure–property-function (SPF) and structure–property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs.

History