American Chemical Society
Browse
mz9b01010_si_001.pdf (2.64 MB)

Self-Assembly of Minimal Peptoid Sequences

Download (2.64 MB)
journal contribution
posted on 2020-03-19, 11:38 authored by Valeria Castelletto, Jani Seitsonen, Kunal M. Tewari, Abshar Hasan, Robert M. Edkins, Janne Ruokolainen, Lalit M. Pandey, Ian W. Hamley, King Hang Aaron Lau
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble “minimal” sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼ 0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.

History