American Chemical Society
Browse
es9b05316_si_001.pdf (432.25 kB)

Seabird-Transported Contaminants Are Reflected in the Arctic Tundra, But Not in Its Soil-Dwelling Springtails (Collembola)

Download (432.25 kB)
journal contribution
posted on 2019-10-17, 19:49 authored by Silje M. Kristiansen, Hans P. Leinaas, Dorte Herzke, Ketil Hylland, Geir W. Gabrielsen, Mikael Harju, Katrine Borgå
Arctic-breeding seabirds contain high levels of many anthropogenic contaminants, which they deposit through guano to the tundra near their colonies. Nutrient-rich soil in vicinity to seabird colonies are favorable habitats for soil invertebrates, such as springtails (Collembola), which may result in exposure to seabird-derived contaminants. We quantified a wide range of lipid-soluble and protein-associated environmental contaminants in two springtail species (Megaphorura arctica and Hypogastrura viatica) and their respective habitats (soil/moss) collected underneath seabird cliffs. Although springtails are commonly used in laboratory toxicity tests, this is the first study to measure concentrations of persistent organic pollutants (POPs) and mercury (Hg) in springtails from the field, and to study biotransportation of contaminants by seabirds to soil fauna. We categorized the sites a priori as of low, medium, or high seabird influence, based on the seabird abundance and species composition. This ranking was reflected in increasing δ15N values in soil/moss and springtails with increasing seabird influence. We found clear indications of seabirds impacting the terrestrial soil environments with organic contaminants, and that concentrations were higher in soil and moss close to the bird cliff, compared to farther away. However, we did not find a relationship between contaminant concentration in springtails and the concentrations in soil/moss, or with level of seabird influence. Our study indicates a low uptake of contaminants in the soil fauna, despite seabird-derived contamination of their habitat.

History