American Chemical Society
Browse
ac0c00497_si_001.pdf (1.36 MB)

Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy

Download (1.36 MB)
journal contribution
posted on 2020-04-01, 19:39 authored by Jing Yue, Yanting Shen, Lijia Liang, Lili Cong, Weiqing Xu, Wei Shi, Chongyang Liang, Shuping Xu
Mitochondrion is one of the most important organelles and becomes a target in many cancer therapeutic strategies. Mitochondrial microenvironments in response to therapeutic methods are the key to understand therapeutic mechanisms. However, they are almost rarely studied. Herein, the mitochondrial microenvironments, including mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) after different photodynamic therapy (PDT) dosages, were monitored by fluorescent imaging and compared among three cell lines (HepG2, MCF-7, and LO2). Furthermore, the fluctuations of intramitochondrial pHs were revealed via a plasmonic mitochondrion-targeting surface-enhanced Raman scattering (SERS) pH nanosensor. Results indicate that the MMP decreases gradually with the ROS generation and the cancerous cells exhibit less response to excess ROS relative to normal cells. On the other hand, the pH value in the mitochondria decreases initially and then increases when the amount of ROS increases. The LO2 cell is preliminarily evidenced to have a higher self-adjustment ability due to its better tolerance to differential intra/extracellular pHs. This study may provide a basis for an in-depth understanding of the mechanisms of the mitochondrial targeting-based PDT therapeutic processes. It is also helpful for more accurate and useful diagnosis according to intramitochondrial microenvironments and improvement on therapy efficiency of cancers.

History