American Chemical Society
Browse
am9b10207_si_001.pdf (1.5 MB)

Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance

Download (1.5 MB)
journal contribution
posted on 2019-07-25, 20:15 authored by Jinfeng Dong, Fu-Hua Sun, Huaichao Tang, Kei Hayashi, Hezhang Li, Peng-Peng Shang, Yuzuru Miyazaki, Jing-Feng Li
Lead-free manganese telluride has been considered to be a promising candidate for mid-temperature thermoelectric materials. In this work, we report point defect scattering-induced reduction of thermal conductivity in MnTe with Se alloying, fabricated by a facile method combining mechanical alloying and spark plasma sintering. A low lattice thermal conductivity of 0.56 W/mK was obtained for MnTe0.92Se0.08, which is quite close to the amorphous limits. A detailed Debye model analysis reveals the underlying mechanism of phonon scattering and well predicts the thermal conductivity with different contents of Se. Meanwhile, a slight increase of carrier concentration was also observed after Se alloying, accompanied by a variation of energy gap that may be associated with the competition among anions in trapping charges. Further Na doping leads to enhanced electrical transport properties, achieving a maximum ZT value of 1.03 at 873 K. An average ZT of 0.52 and a calculated efficiency of more than 9% also suggest the promising application of MnTe at medium temperatures.

History