American Chemical Society
Browse
jo000913b_si_002.pdf (191.47 kB)

Rational Synthesis of β-Substituted Chlorin Building Blocks

Download (191.47 kB)
journal contribution
posted on 2000-10-21, 00:00 authored by Thiagarajan Balasubramanian, Jon-Paul Strachan, Paul D. Boyle, Jonathan S. Lindsey
Chlorins bearing synthetic handles at specific sites about the perimeter of the macrocycle constitute valuable building blocks. We previously developed methodology for preparing meso-substituted chlorin building blocks and now present methodology for preparing several complementary β-substituted chlorin building blocks. The chlorins bear one or two β substituents, one meso substituent, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and β substituents. The synthesis involves convergent joining of an Eastern half and a Western half. New routes have been developed to two β-substituted bromo-dipyrromethane monocarbinols (Eastern halves). A new β-substituted Western half was prepared following the method for preparing an unsubstituted Western half (3,3-dimethyl-2,3-dihydrodipyrrin). Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. β-Substituted chlorins have been prepared in 18−24% yield bearing a 4-iodophenyl group at the 8-position, a 4-iodophenyl group or a 4-[2-(trimethylsilyl)ethynyl]phenyl group at the 12-position, and a 4-iodophenyl group and a 4-[2-(trimethylsilyl)ethynyl]phenyl group at diametrically opposed β-positions (2, 12). The latter building block makes possible the stepwise construction of linear multi-chlorin architectures. The chlorins exhibit typical absorption and fluorescence spectra. A systematic shift in the absorption maximum (637−655 nm for the free base chlorins, 606−628 nm for the zinc chlorins) and intensity of the chlorin Qy band (ε up to 79 000 M-1 cm-1) is observed depending on the location of the substituents. The characteristic spectral features and location of substituents in defined positions make these chlorins well suited for a variety of applications in biomimetic and materials chemistry.

History