American Chemical Society
Browse
jm8b00036_si_001.pdf (3.77 MB)

Python Cathelicidin CATHPb1 Protects against Multidrug-Resistant Staphylococcal Infections by Antimicrobial-Immunomodulatory Duality

Download (3.77 MB)
journal contribution
posted on 2018-02-21, 00:00 authored by Shasha Cai, Xue Qiao, Lan Feng, Nannan Shi, Hui Wang, Huaixin Yang, Zhilai Guo, Mengke Wang, Yan Chen, Yipeng Wang, Haining Yu
Multidrug-resistant Staphylococcus aureus, including MRSA (methicillin-resistant) and VRSA (vancomycin-resistant), causes serious healthcare-associated infections, even sepsis and death. Here, we identified six novel cathelicidins (CATHPb1–6) from Python bivittatu, and CATHPb1 displayed the best in vitro pharmacological and toxicological profile. We further show that CATHPb1 exhibited evident protection in mice MRSA/VRSA infection models, given either 24 h before or 4 h after infection. The protection was all effective through different administration routes, but was blocked by in vivo depletion of monocyte/macrophages or neutrophils. CATHPb1 can rapidly and massively modulate macrophages/monocytes and neutrophils trafficking to the infection site, and potentiate their bactericidal functions. Meanwhile, CATHPb1 remarkably augmented neutrophil-mediated bacteria killing by facilitating neutrophil extracellular traps (NETs) formation and preventing its degradation. Acting through MAPKs and NF-κB pathways, CATHPb1 selectively enhanced the levels of chemokines while reducing the production of pro-inflammatory cytokines without undesirable toxicities. The much improved serum half-life and stabilities confer CATHPb1 an excellent prospect to become a novel therapeutic agent against multidrug-resistant staphylococcal infections.

History