American Chemical Society
Browse
am9b21636_si_001.pdf (1.87 MB)

Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructuration

Download (1.87 MB)
journal contribution
posted on 2020-04-01, 14:35 authored by Ana Rovisco, Andreia dos Santos, Tobias Cramer, Jorge Martins, Rita Branquinho, Hugo Águas, Beatrice Fraboni, Elvira Fortunato, Rodrigo Martins, Rui Igreja, Pedro Barquinha
The current trend for smart, self-sustainable, and multifunctional technology demands for the development of energy harvesters based on widely available and environmentally friendly materials. In this context, ZnSnO3 nanostructures show promising potential because of their high polarization, which can be explored in piezoelectric devices. Nevertheless, a pure phase of ZnSnO3 is hard to achieve because of its metastability, and obtaining it in the form of nanowires is even more challenging. Although some groups have already reported the mixing of ZnSnO3 nanostructures with polydimethylsiloxane (PDMS) to produce a nanogenerator, the resultant polymeric film is usually flat and does not take advantage of an enhanced piezoelectric contribution achieved through its microstructuration. Herein, a microstructured composite of nanowires synthesized by a seed-layer free hydrothermal route mixed with PDMS (ZnSnO3@PDMS) is proposed to produce nanogenerators. PFM measurements show a clear enhancement of d33 for single ZnSnO3 versus ZnO nanowires (23 ± 4 pm/V vs 9 ± 2 pm/V). The microstructuration introduced herein results in an enhancement of the piezoelectric effect of the ZnSnO3 nanowires, enabling nanogenerators with an output voltage, current, and instantaneous power density of 120 V, 13 μA, and 230 μW·cm–2, respectively. Even using an active area smaller than 1 cm2, the performance of this nanogenerator enables lighting up multiple LEDs and other small electronic devices, thus proving great potential for wearables and portable electronics.

History