American Chemical Society
Browse
am6b00737_si_002.avi (1.71 MB)

Photothermal Breaking of Emulsions Stabilized with Graphene

Download (1.71 MB)
media
posted on 2016-04-07, 00:00 authored by Matthew D. J. Quinn, Khu Vu, Stephen Madden, Shannon M. Notley
Pristine graphene particles prepared using an aqueous phase exfoliation technique have been used to promote the stabilization of emulsions through adsorption at the oil–water interface. Highly localized phase separation of these ultrastable emulsions could, however, be induced through photothermal heating of the graphene particles at the interface exposed to near-infrared light. The graphene wettability, which is a key determinant in preventing droplet coalescence was altered through the adsorption of nonionic block copolymer surfactants. Varying the aqueous solution conditions influenced the hydration of the hydrophilic component of the surfactant providing a further opportunity to alter the overall particle wettability and, hence, stability of the emulsion. In this way, highly stable-oil-in water emulsions were produced with decane; however, water-in-oil emulsions were formed with toluene as the oil phase.

History