Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots

Inspired by the outstanding optoelectronic properties reported for all-inorganic halide perovskite quantum dots (QDs), we have evaluated the potential of these materials toward the photocatalytic and photoelectrochemical degradation of organic compounds, taking the oxidation of 2-mercaptobenzothiazole (MBT) as a proof-of-concept. First, we determined electrochemically the energy levels of dispersions of perovskite QDs with different band gaps induced by the different ratios between halides (Br and I) and metallic cations (Pb and Sn). Then, we selected CsPbBr<sub>3</sub> QDs to demonstrate the photocatalytic and photoelectrochemical oxidation of MBT, confirming that hole injection takes place from CsPbBr<sub>3</sub> QDs to MBT, resulting in the total degradation of MBT as evidenced by electrospray mass spectrometry analyses. Although the stability and toxicity of these QDs are major issues to address in the near future, the results obtained in the present study open promising perspectives for the implementation of solar-driven catalytic strategies based on these fascinating materials.