American Chemical Society
Browse
jp4127978_si_001.pdf (482.41 kB)

Phase Structure and Phase Transition Mechanism for Light-Induced Ia3d Cubic Phase in 4′‑n‑Docosyloxy-3′-nitrobiphenyl-4-carboxlic acid/Ethyl 4‑(4′‑n‑docosyloxyphenylazo)benzoate Binary Mixture

Download (482.41 kB)
journal contribution
posted on 2014-04-03, 00:00 authored by Ryo Hori, Yohei Miwa, Katsuhiro Yamamoto, Shoichi Kutsumizu
The light-induced smectic C (SmC) to bicontinuous cubic (Cubbi) phase transition was investigated using grazing-incidence X-ray diffraction (GI-XRD) and Fourier transform infrared (FT-IR) spectroscopy to elucidate the mechanism at the molecular level. The sample was a binary mixture of 4′-n-docosyloxy-3′-nitrobiphenyl-4-carboxylic acid with an azobenzene derivative having a similar structure. The GI-XRD analysis revealed that the lattice size of the light-induced Cubbi phase almost coincides with the extrapolated value of the thermally induced one to the irradiation temperature. The FT-IR analysis also showed that the UV irradiation shifts the peak positions toward their extrapolated wavenumbers that would be displayed by the thermally induced Cubbi phase at the temperature. These results indicate that both the molecular state and periodic structure realized by the irradiation may be regarded as the “postulated” state and periodic structure of thermally induced Cubbi phase at the temperature. This leads to a conclusion that the transcis photoisomerization of the azobenzene derivatives in the mixture gives rise to destabilization of the SmC phase with layered structure, alternatively favoring the formation of the Cubbi phase with a twisted molecular arrangement.

History